
Tree Traversals

See Section 8.4 of the text.

We might create Binary Tree structures
with the following Node class

class Tree <T> {
T data;
Tree<T> left;
Tree<T> right;
....

Here is a picture of a Binary Tree with Integer
values at each node:

10

17 23

34 19

45 12

63

There are three standard ways to iterate through
the nodes of a tree:

A preorder traversal of a tree lists the root, then
its left subtree, then its right subtree.

For this tree the preorder traversal is
10 17 34 23 19 45 12 63

10

17 23

34 19

45 12

63

A postorder traversal of a tree lists the left
subtree, the right subtree and then the root.

For this example the postorder traversal is
34 17 45 12 19 63 23 10

10

17 23

34 19

45 12

63

Finally, the inorder traversal lists the left subtree,
the root, and then the right subtree.

For this example the inorder traversal is
34 17 10 45 19 12 23 63

10

17 23

34 19

45 12

63

Clicker Q: So what is the inorder (left child, node,
right child) traversal of the following tree?

1

2 3

4 5

7 8

6

A. 1 2 3 4 5 6 7 8
B. 1 2 4 3 5 7 8 6
C. 2 4 1 3 7 5 8 6
D. 4 2 1 7 5 8 3 6

If all that you want to do is to print the data
stored in a node in the order of one of these
traversals, a simple recursion does the job.
Here is the preorder traversal

public void PrintPreorder(TreeNode t) {
if (t != null) {

System.out.println(t.data);
if (t.left != null)

PrintPreorder(t.left);
if (t.right != null)

PrintPreorder(t.right);
}

}

If you want to do more than just print the
nodes, you can use a stack as a worklist.
Consider first a preorder traversal. First push
the root on the stack. Now repeatedly pop a
node off the stack, push on its right child,
then its left child. The nodes will pop off the
stack in the correct sequence for a preorder
traversal.

If you want an inorder traversal nodes appear
twice -- first when we are about to push on their
left child, then when we process the node itself
and are ready to push the right child. So push
the nodes with markers. First push the root with
marker 1. When you pop a node with marker 1,
push it back on with marker 2, then push its left
child with marker 1. When you pop a node with
marker 2, do whatever processing you need to
do with the node, then push its right child with
marker 1.

The postorder traversal takes 3 markers: we
initially push nodes with marker 1. When we pop
a node with marker 1, we push it back with
marker 2 then push its left child with marker 1.
When we pop a node with marker 2, we push it
back with marker 3 and then push its right child
with marker 1. Finally, when we pop a node with
marker 3 we process it.

